PHYSICAL REVIEW VOLUME

187,

NUMBER 5§ 25 NOVEMBER 1969

Inelastic Electron Scattering and the Multi-Regge Model*

MicHAEL J. CReEUTZ}
Standford Linear Accelerator Center, Stanford University, Stanford, California 94305
(Received 11 June 1969)

We investigate the multi-Regge model in the kinematic region where the four-momentum of one initial
particle is large and spacelike. These kinematics occur in inelastic electron scattering through single virtual
photon exchange. Contradicting present data, we predict a rapid falloff in the cross section as the virtual

particle becomes more spacelike.

FTER radiative corrections, inelastic electron

scattering measures the total cross section for
virtual photons as a function of the photon mass as well
as its energy. This freedom of varying a particle mass
is a new feature not yet available in other reactions;
therefore, this process has recently attracted much
theoretical interest.!'? Denote the total cross sections
for transverse and longitudinal virtual photons incident
on spin-averaged protons by ¢r and o, respectively,
let » be the photon lab energy, and let p,2 be the square
of the photon four-momentum. Bjorken! has shown
that, as » and p,®> became large with the ratio »/p?
constant, it is likely that vor and vo. have finite, as
opposed to infinite, limits of value dependent on this
ratio »/p,%. Current data seem to indicate that this limit
is nonvanishing.? Most of the recent interest in the
subject concerns the behavior of this limit as a function
Of V/ [712.

The multi-Regge model (MRM) has drawn interest
as a possible description for highly inelastic hadronic
collisions.* We wish to relate the MRM to inelastic
electron scattering by discussing the behavior of the
MRM as the four-momentum p; of an initial particle
becomes large and spacelike. In this way, we hope to
gain some insight into the behavior of Bjorken’s limit
functions. In particular, we ask if the above-discussed
behavior for vo, and voy is consistent with the simple
MRM. As we are studying the MRM in a region quite
different from where it is usually applied, any short-
comings of the model here will not invalidate the model
in its usual application to real hadronic reactions.

Essentially, our calculation follows the work of
Halliday and Saunders,® except that we allow one initial
mass to be variable. For simplicity we treat all particles
as spinless. Figure 1 shows our kinematics. A virtual
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particle of momentum p; collides with a particle of
momentum p, and unit mass (p.2=1). The final state
consists of # identical particles labeled with momenta
gi,t=1,---m, and all of unit mass (¢;>=1). Define
invariants

$i= (Qi+9i+l)2;

ti=(P1—Z %)2,
- (1)
s=(p1+p2)?=(c.m. energy)?,

v=p1 p2=3(s—1—p1%)
=energy of p; in the rest frame of p».

The simple form of the MRM which we shall use says
that when all the s; are large and the |#;| small, the
amplitude for the process is approximately of the form

T.= G(PIZ’tOG(tl’[g) oo G(tn—l,l)sla(tl) RN Sn_la(tn—l) . (2)

Here the G’s are unspecified vertex functions and «a(t;)
is the trajectory function of the exchanged Reggeon.
We consider only one type of Reggeon and take

a(t)= jotj't:, '#0. )

For each of the n! orderings of the g;, there is a similar
expression for 7', valid when the respective s; are large
and ¢; small. It will be clear later that these #! kinematic
vegions are disjoint, giving no interference between
them; thus, only one ordering need be considered. The
factor of n! arising from these different orderings is
canceled by the 1/x! occurring in the phase space for
n identical particles.
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F16. 1. Kinematics for the inelastic scattering.
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The MRM contribution to the total cross section
from n-particle production is therefore given by

1 dd
Trot" = / { T“12’ (4)
e (2p10) (2p20) ) (2m)3n—4

where

dcb=a4(p1+p2—2 i) IT [6% (g2 —1)d*g:],
=1 i=1

67 (¢*—=1)=0(g0)8(¢*—1),
(x)=1, x>0

=0, x<0,

pio=energy of p;, and v =relative velocity of p; and
pa. We work in a frame where p; and p, are parallel.
In the limit y —o (note s>#n?>1 implies —p,>< ),

1/0:e1(2p10) (2p20) =1/4v.

To simplify the integral over phase space, let us
change to a set of variables introduced by Sudakov® and
apply them to this problem, following closely Halliday

and Saunders.’ To define these variables, introduce
two new momenta
=p1=[r—(*—p*)'*]p,,
(6)

= po—(1/p)[v— (> —p») ' p1.

These momenta have the useful property p,"?= p,"?=0.
In the limit y—«<, we have

pi'=p1—(p1/20) ps,

P’ = pa—(1/20)p1, (7
pll-PZ/zy‘
Now we define the Sudakov variables {«;,8:,K;} by
gi=a;pr’ +Bip’+ K, (8)

where K; is the transverse part of ¢;. A little algebra
shows that, in the limit y—o (allowing —p;* com-
parable to v»),

d4qi= vr/aill’ﬁidei s (9)

1 1—K;2
6 (gn*—1) =—0(a,~)6<a,ﬂi— ~> , (10)

2y v
" 1
54(P1+P2“§(1i)=>52(2 K)o(X ai—1)
2%
xa(Z BL—1~2~> (11)
si=2(ai+ait1) (Bi+Bir1)

(12)

o (K AK ),

8V. V. Sudakov, Zh. Eksperim. i Teor. Fiz. 30, 87 (1956)
[English transl.: Soviet Phys.—JETP 3, 65 (1956)].
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n

1=(E K- 5 w3,

J=1+1 Jj=1

: p? (13)

+P Z 0‘;+Z Bi——.

J=1i+1 =1 2v

Note that «; and B; are all positive because of
8t(¢:*—1). In terms of these variables, our integral
becomes

1

ot =— 11 l:daidﬁ,-d?K 0()
2"+2(27r)3"_41/2 =1

1—K2

K;
X5<az}3i—
2v

X5<Z Bi—1 —%> [G(pr%1) |2 G(lu,
P v

)]52( > K)o(E ai—1)

n—2

XTI 1GUstiy) |2 TT (s2os27t) . (14)
=1 7

In the region where all the s; are large, the factor
s/t in (14) gives a rapid ¢; dependence. If the G’s are
smooth and polynomially bounded, this factor will
cause small #; to dominate the cross section. Further-
more, when the s; are large enough, the factor 5,274 will
dominate all {; dependence.

Restricting ourselves to this region of large s;, we can
immediately do the K, integrals, with the result that

1 T n—1
Ttot” = __<—>
2 "+2(27r)3"_4y2 2.]'

0| l:daidﬂ,-e(a;ﬁ( ,5,——)]5( T a—1)

7=J

xi( Br—l—z—l>IG(1’12,/i)l210(111—1,1)12

n—2

XTI [G(titisa) |%( H Y )“’(H §:8°t) . (13)
=2 nsl
where now
$i=2(ai+ai1) Bi+Biv1) ,
li=—2( Z aJ)(Z B) (16)
J=1+1
n p 2
+P Z 017+Z Bi——.
j=i+1 2v
Since s; is large and «;8;~1/2», we have
@ Oy
si=——+—>>1. 17)

Ai41 a;
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However,
p® i —Qiy1
— =2 BitHl< = 2vaiBi= (18)
v =1 a;
So to keep |#;| small we must have
[£7) ﬂi 1
Sim 1 (19)
[ 745 Bl
and
l;= Plzai.,_l—pl?/ZV. (20)

This shows that the a; are a decreasing sequence and
therefore demonstrates our earlier claim that other
particle orderings have disjoint kinematic regions for
the MRM. Remembering that Y ,a;=1, we see
from (19) that

a=1l, Bi=1/2. (21)
Similarly, since >_; B:= 1+ p.*/2v, )
Ba=1+p2/2v=s5/2v, an=1/s.
From these relations, clearly,
H Si=ay /‘an::s (23)
and
i 1)1‘2
/1'2‘-{712 H Sj-l——_ . (24)
j=1 2v
Let use define y; and vy by
§i= Kx4d , P12= s, (25)

Since I]:si=s, we have X ;y;=1. We have required
si—©, so we must keep

in €> 0 ) (26)
(27
Furthermore s;<s implies y;<1. The variable v can
run from — to + = as p;® runs from 0 to 2», although
v becomes large only very near these values of p;2. The
usual limit p,?/v=const where »—% corresponds
toy—1.
In terms of these new variables

where
1/e=o(Ins).

sP=exp(—2j'y; Ins sy=30 vi)g, 2 A2

=0( 2 yj—vy)si el [T s, (28)
=1 i

Hsii’f'li:: H(yl —»Y)S"‘J"III?/V .
T

This 6 function represents a shrinkage with increasing
of the kinematic region for the MRM. It means that in
order to keep # small, s; must be larger than p;2.
Unless #=2, we have s;<s implying y:1<1. The
6(y1—7) reduces the multiplicity # as vy increases until
for y=1 only n=2 will contribute appreciably. Let us
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briefly discuss the case y<1 before going on to y=1
and the Bjorken limit.

We change integration variables from the o’s to the
¥’s using

Ine; Ina;

(29)

Ins

This gives the result

s2jo—2
Teot" = [G(p12,0)]2|G(0,1)]*
ns
[G(0,0)|2\*% 1
X< ) . Jn(e)')') ) (30)
3272’ 32y’
where
Ldyy- - -dyn
Juley)=| ———(X yi—1)0(31—v). (31)

e V1" "Yn-1

With p,2=1, this is just the result of Halliday and
Saunders. Note that J,(e,¥)=0 unless v+ (n—2)e<1.
This means that

n<24(1—y)/e=2+40[In(s/—p)].  (32)

This shows the decrease in multiplicity mentioned
above.

As we go to the Bjorken limit of v— with »/p?
fixed, the parameter v goes to 1. In this limit, we have
the remarkable result that final states of two hadrons
will dominate the cross section. This contribution from
n=2 is easily evaluated, giving

1 g2 20—1
Ttot =at0t2 =—A.— —-——-s_J JoRe—Df
327 j’ Ins 2w

1 2 —_ 2
20(2w—1) 2w(2w—1)

where
w= —v/p:’. (34)

The expression 1/2w(2w—1) occurring in (32) is the
minimum value of —¢; in the limit of large ». Because it
can approach this value only for =2, two final hadron
states should dominate the cross section. Equation (33)
is the prediction of the MRM for the cross section in
the Bjorken limit with w< .

If we put in a typical jo=3, then for fixed w,

(_P12)—f’/w(2u—l)
V(Ttot“’( )X t(;(?l?:
IH—P12

2

. (35)

20(2w—1)
Bjorken predicts that this should go to a constant as
P12 — . Indeed, the first factor is slowly varying for

w>1. However, from experience with elastic electro-
magnetic form factors, one might expect

-1

() ()
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This falloff is quite rapid and no such effect has been
seen as yet in the data. This indicates trouble with the
model unless something drastic happens to the asymp-
totic behavior of G(p:2,f) as ¢ is varied from the physical
mass of the exchanged particle to /= —1/2w(2w—1).
When w2 1, this extrapolation is not large and we can-
not theoretically justify such a change in behavior.

It may be that the data are not yet in the asymptotic
region. In present experiments, —p,? is not large com-
pared to the above mentioned extrapolation of f.
Assuming that this is the case, and that the model is
still applicable, we can make a simple prediction on
final-momentum distributions.

If we define the final-particle ordering for multi-
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particle-production events by decreasing lab momentum
(decreasing «;), we should find most events with
s1= (q1+q2)2 > — p12, whereas further s;= (¢:+ giy1)? will
tend to lower values. Furthermore, as we increase the
lab energy » with fixed w0, the average multiplicity
should decrease to two. These are effects that may
begin to show up at nonasymptotic energies and should
be looked for.
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We consider a system of three pseudoscalar mesons in which one of the mesons can form a two-particle
resonance with either of the other two. The models we discuss include the Lee model, approximations to
the Lee model, and a fully relativistic isobar model. As an example for the nonstatic model we discuss
the 3r state containing two overlapping, identical p resonances. There have been claims that resonance
projections can lead to enhancements in the three-particle mass when there are overlapping two-particle
resonances. We show that these enhancements are caused by approximations which are not actually res-
onance projections, and we show for our models that properly made resonance projections do not lead
to enhancements. We discuss briefly some alternatives to the isobar model for treating overlapping

resonances.

I. INTRODUCTION

N this paper we consider an example of overlapping
resonances, namely, a state containing three
pseudoscalar mesons in which one of the mesons can
form a two-particle resonance with either of the other
two. Experimentally, such a state usually occurs as a
subsystem for a final state in a meson-nucleon produc-
tion reaction, and experimental data are becoming
available with good enough statistics to allow a de-
tailed study of such subsystems. Two cases of particular
interest are the 3x system with two identical #’s either
of which can form a p with the third 7, and the charged
Krr system which contains the appropriate quantum
numbers for one p and (at least) one K*. Much of the
interest in these particular systems comes from the fact
that there are experimentally observed enhancements
in the three-particle mass spectrum for both these cases

* Supported in part by the National Science Foundation, under
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versity, 1969.

I Present address: Department of Theoretical Physics, Middle
East Technical University, Ankara, Turkey.

near the overlap threshold, called the 4,(1080) and the
K*(1300), respectively. One of the motivations of this
work was to investigate the possibility that such en-
hancements could be caused merely by the resonance
overlap.

In Sec. IT A we discuss overlapping resonances in the
Lee model and in other static models. The Lee model is
of particular interest because it presents the overlapping
resonance situation within the context of a completely
soluble field theory, and the static kinematics is useful
for gaining understanding of some of the mechanisms
involved in overlapping resonances. In Sec. II B we
develop a nonstatic isobar model using the helicity-state
formalism introduced by Wick.! The model developed
here, although equivalent to other approaches>™* is
particularly simple to work with when calculating total
or differential cross sections. As an example we discuss
the 3r case referred to above.
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